
Characteristics of deep crustal seismic anisotropy
from a compilation of rock elasticity tensors
and their expression in receiver functions
Sarah J. Brownlee1 , Vera Schulte-Pelkum2 , Anissha Raju3, Kevin Mahan3 , Cailey Condit3 ,
and Omero Felipe Orlandini3

1Department of Geology, Wayne State University, Detroit, Michigan, USA, 2Cooperative Institute for Research in
Environmental Sciences and Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA,
3Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA

Abstract Rocks in the continental crust are long lived and have the potential to record a wide span of
tectonic history in rock fabric. Mapping rock fabric in situ at depth requires the application of seismic
methods. Below depths of microcrack closure seismic anisotropy presumably reflects the shape and
crystallographic preferred orientations influenced by deformation processes. Interpretation of seismic
observables relevant for anisotropy requires assumptions on the symmetry and orientation of the bulk elastic
tensor. We compare commonly made assumptions against a compilation of 95 bulk elastic tensors from
laboratory measurements, including electron backscatter diffraction and ultrasound, on crustal rocks. The
majority of samples developed fabric at pressures corresponding to middle to lower crustal condition. Tensor
symmetry is a function of mineral modal composition, with mica-rich samples trending toward hexagonal
symmetry, amphibole-rich samples trending toward an increased orthorhombic symmetry component, and
quartz-feldspar-rich samples showing a larger component of lower symmetries. Seventy-seven percent of
samples have a best fit hexagonal tensor with slow-axis symmetry, as opposed to mantle deformation fabric
that usually has fast-axis symmetry. The best fit hexagonal approximation for crustal tensors is not elliptical but
deviates systematically from elliptical symmetry with increasing anisotropy, an observation that affects the
magnitude and orientation of anisotropy inferred from receiver function and surface wave observations.
We present empirical linear relationships between anisotropy and ellipticity for crustal rocks. The maximum
out-of-plane conversion amplitudes in receiver functions scale linearly with degree of anisotropy for
nonelliptical symmetry. The elliptical assumption results in a bias of up to 1.4 times true anisotropy.

1. Introduction

Our understanding of the structure of Earth, from core to crust, is derived mainly from seismic observations.
Most of these observations are collected on continents because that is where the densest arrays of seism-
ometers can be placed. Thus, our observations of the deeper parts of the Earth are often viewed through
the window of the continents, making it critical to understand the structure and composition of the continen-
tal crust and how it affects seismic and other geophysical observations. In principle, the longevity of conti-
nental crust also allows reconstruction of tectonic processes over a long time range.

Recent developments in methods for observing seismic anisotropy have made detection of crustal aniso-
tropy more common. These studies have also demonstrated that crustal anisotropy is more complex than
mantle anisotropy and can be strong enough to have an effect on mantle observations if not accounted
for. Seismic anisotropy in the crust comes from three main sources: (1) oriented cracks andmicrocracks (most
important in shallow crust) [e.g., Crampin, 1981; Nishizawa, 1982; Crampin, 1994], (2) crystallographic pre-
ferred orientation (CPO) of minerals [e.g., Silver and Chan, 1991; Savage, 1999], and (3) compositional layering
[e.g., Backus, 1965]. Our ability to interpret crustal anisotropy, in particular in themiddle and lower parts of the
crust, relies on measurements of the elastic properties, i.e., elastic tensors (intrinsic anisotropy), of crustal
rocks and an understanding of the effects of layering and larger-scale structure (extrinsic anisotropy).

Elastic tensors of rocks can be constructed in two ways: (1) physically measuring the acoustic velocities in
different directions through a sample, and (2) measuring the CPO of constituent minerals in a sample and
calculating an elastic tensor based on a combination of single-crystal elastic tensors rotated and averaged
to reflect each mineral CPO and the volume proportion of minerals in the sample. Some CPO-based
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methods such as asymptotic expansion homogenization also consider the compositional textures and
structure in the sample, such as banding.

A number of studies over the last 30 years or so have reported elastic tensors for crustal rocks using acoustic
and/or CPO-based measurements. We have compiled reported elastic tensors from published studies and in
some cases directly from investigators for publications that used complete elastic tensors but did not include
them in the published results or publications that are still in preparation. Analysis of these tensors, including
rock type and composition, provides a framework from which interpretations of crustal anisotropy can be
based. These tensors are derived from the rocks and do not depend on assumptions of simplified symmetry,
so they also provide a basis for more realistic symmetry assumptions, as well as guidelines for situations in
which simplified symmetries are not good approximations.

We report a first-cut analysis of the tensor compilation focusing on the magnitude of anisotropy, the symme-
try components, and how these properties are related to rock type and composition. The analysis is prelimin-
ary because the compilation will continue to grow as more studies measure the elastic tensors of crustal
rocks, but this first cut reveals patterns and trends that will be immediately useful for improving seismic inver-
sion methods and interpretations of crustal anisotropy. We also perform seismic forward modeling to inves-
tigate what the trends observed in our compilation imply for the interpretation of seismic observations.

2. Description of Tensor Compilation
2.1. Rock Composition and Deformation Conditions

The current compilation includes 95 tensors covering a wide variety of crustal rock types (sample locations
are listed in Table 1, and shown in Figure 1c). The majority of the tensors are from gneisses and schists
deformed at middle and lower crustal conditions (~300–900°C and 4–9 kbar). The compilation includes some
highly deformed mylonitic rocks, as well as some igneous intrusives with little deformation. Other rock types,
such as sandstone, quartzite, calc-silicates, marbles, and metavolcanics, are also represented. The mineral
proportions range from >90% quartz to >70% amphibole to 90% dolomite and calcite. SiO2 contents range
from ~5–90%, such that the compilation covers the wide variety of compositions that might be found in the
middle and lower crust. The expected middle and lower crustal rock types and possible compositions are all
represented, but statistically the compilation is not representative of the middle and lower crust; for instance,
there is only one tensor from an anhydrous granulite. Nonetheless, most of the tensors are from rocks
expected to be present within the deeper portion of the crustal column. The tensor compilation comprises
44% quartzofeldspathic rocks with igneous or supracrustal protoliths (28% gneisses and 16% plutonic rocks
with no gneissic banding); 15% mica schists; 22% amphibolites; 10% calc-silicates; and 3% or less sandstone,
granofels, quartzite, mafic eclogite, and granulite (Figure 1a). When characterized based on metamorphic
temperatures for fabric development, the compilation is approximately evenly split into low-grade (30% at
~300–500°C), midgrade (40% at 500–700°C), and high-grade (30% at 700–900°C) samples. There are an addi-
tional six tensors from ultrahigh-pressure rocks. The compilation is naturally biased toward visibly deformed
rocks, since those tend to be the subject of studies that incorporate texture analysis and therefore may be
biased toward higher anisotropy compared to average bulk continental crust. However, the trends relating
mineralogy and rock type to anisotropy and symmetry are not expected to be significantly affected by this bias.

Table 1. Sources, Methods, and Sample Localities for the Elastic Tensors in the Compilation

Source Method Locality # of tensors

Tatham et al. [2008] EBSD Upper Badcall shear zone, Scotland 8
Ward et al. [2012] EBSD Wyoming, USA 3
Brownlee et al. [2011] EBSD Papua New Guinea 6
Erdman et al. [2013] EBSD Basin and Range, USA 25
Brownlee, unpublished data EBSD Southern California and North Carolina 28
Weiss et al. [1999] U stage Italy 8
Barberini et al. [2007] U stage Italy 2
Khazanehdari et al. [1998] X-ray Italy 1
Valcke et al. [2006] X-ray North Sea 3
Ji et al. [2013] Ultrasound China and Saskatchewan, Canada 6
Takanashi et al. [2001] Ultrasound Japan 4
Rasolofosaon et al. [2000] Ultrasound Germany 1
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2.2. Methods of Elastic Tensor Determination

The compilation includes tensors determined by three different methods (Table 1). The majority are from
mineral CPO-based calculations (electron backscatter diffraction (EBSD) at 74%, X-ray texture goniometry
at 4%, and universal stage at 11%). The remaining 11% are based on ultrasonic or pulse transmission acoustic
velocity measurements. There are some important considerations when comparing results from different
methods. Acoustic velocity measurements determine the velocity in particular directions and then fit an elas-
tic tensor to the data. Most methods use core samples taken in the directions of the principal rock fabric axes:
Z—perpendicular to foliation, X—parallel to lineation, and Y—perpendicular to X and Z (perpendicular to
lineation and parallel to foliation). A required assumption for fitting a tensor to the measured velocities is that
the true maximum andminimum velocities have beenmeasured, whichmay not be the case when only three
or even six cores are used. Inverting individual core velocities for an elastic tensor also requires assuming a
simplified symmetry. Some laboratories use spherical samples, which allows the velocity in many different
directions to be measured on the same sample (e.g., Rasolofosaon et al. [2000] and a sample in Weiss et al.
[1999]), an advantage over core samples because there is no requirement of simplified symmetry. We use
ultrasound measurements that were conducted under confining pressures sufficient for crack closure.

The CPO-based measurements use determinations of mineral CPO in conjunction with single-crystal elastic
constants for the constituent minerals in the sample to calculate an average elastic tensor for the rock. The
most common method for determining mineral CPO is electron backscatter diffraction (EBSD). EBSD pro-
duces a diffraction pattern in a scanning electron microscope by sending an electron beam toward a highly
polished surface at an incident angle of ~20°. The electrons are diffracted by the crystal lattice as the beam
enters and exits the surface of the material, producing a pattern that is characteristic of the mineral and its
crystallographic orientation. The distribution of crystallographic orientations in a sample can be

Figure 1. (a) Breakdown of the samples in the elastic tensor compilation by rock type. (b) Histogram of the strength of ani-
sotropy of the samples in the compilation, with anisotropy strength based on fraction of the total tensor norm. (c) Location
map for the samples in the tensor compilation. (d) Scatterplot of tensor norm anisotropy versus Vp anisotropy, AVp,
which is the difference betweenmaximum andminimum Vp as a percentage of themean Vp (further defined in section 3.2).
Diagonal line shows a ratio of 1, where samples would fall if the two measures of anisotropy coincide.
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determined by measuring the orientations of a large number of grains of each mineral in the sample. Several
EBSD-based studies compare velocity results to ultrasound measurements on the same samples, and vice
versa, and find that they are typically within ~5% of one another for the velocities in the principal directions
[Barruol and Kern, 1996; Weiss et al., 1999; Brownlee et al., 2011; Erdman et al., 2013].

Another method for determining mineral CPO is X-ray texture goniometry (XTG). This method also produces
diffraction patterns but from a larger volume of material and for finer-grainedmaterial. The pattern produced
is a function of the distribution of orientations in the material. Both EBSD and XTG can produce aggregate
elastic tensors for the rock without enforcing any symmetry assumptions and without assuming that the prin-
cipal velocity directions will match the principal fabric axes.

Predating the automated CPO determination via EBSD or XTG is the universal stage. Universal stage methods
utilize a multiaxis stage on a standard petrographic microscope that has five axes of rotation, which allows
determination of the orientation of the optic axis of the minerals present in the sample. This method is con-
siderably more time intensive than EBSD methods because it cannot be automated, and thus, most universal
stage CPO determinations stop at ~300–500 orientation determinations per sample. Counting statistics on
random samples of 200 grains from a particular orientation distribution are generally within uncertainty of
the full distribution, so universal stage determinations are likely to be as representative of the true orientation
distribution as EBSD determinations from the same area of a thin section. The uncertainty of individual orien-
tation measurements is highly dependent on the experience of the user for both U stage and EBSD. The main
advantages of EBSD over U stage are the ability to cover large areas in a short period of time and a higher
spatial resolution (submicron for EBSD versus ~30 μm for U stage).

There are advantages and disadvantages to both acoustic velocity methods and CPO-based methods. An
advantage of CPO-based methods is that secondary effects such as cracks and late alteration features that
may not have been present when the targeted rock fabric developed can be avoided. An advantage of acous-
tic velocity methods is that measurements are typically made at various confining pressures, such that once
cracks have closed, it is possible to determine the partial derivatives of velocity with respect to pressure for
the aggregate. Acoustic velocity determinations are, however, generally restricted to a limited number of
directions. Acoustic velocity measurements are also significantly more labor intensive and cost intensive than
CPO-basedmethods, particularly those employing EBSD. X-ray methods have an advantage over EBSD in that
they completely characterize the orientation distribution in a volume of material, but X-ray methods are gen-
erally restricted to fine-grainedmaterials. One of themain limitations to CPO-based techniques is that the cal-
culation of the aggregate elastic tensor is limited by the availability and accuracy of single-crystal elastic
tensors for constituent minerals. For most crustal minerals, the single-crystal elastic tensors are only mea-
sured at standard temperature and pressure conditions (STP). The majority of the tensors in this compilation
are thus reported at STP. For rocks of known composition, the STP tensors can be scaled to crustal pressure
and temperature conditions using an isotropic scaling based on calculated partial derivatives of bulk and
shear moduli for the rock composition [e.g., Hacker et al., 2003]. Isotropic scaling will not account for the
effects of particular elastic constants having different partial derivatives with respect to pressure and tem-
perature, but it does allow for a more direct comparison to measured seismic velocities. The discussion in this
paper is mainly concerned with trends in the magnitude and symmetry of seismic anisotropy related to rock
type and mineralogy. Since the exact behavior of elastic tensors with pressure and temperature is not well
characterized, even for single minerals, we will focus on analyzing the trends we observe using the tensors
as reported. We note a need for additional determinations of single-crystal elastic constants and their pres-
sure and temperature partial derivatives in order to calculate more accurate elastic tensors for realistic crustal
conditions than what is possible currently.

3. Characteristics of Tensor Compilation
3.1. Decomposition Into Symmetry Components

We use the tensor decomposition introduced by Browaeys and Chevrot [2004] to determine to what extent
the full sample tensors are described by isotropic, hexagonal, orthorhombic, or lower symmetries. An isotro-
pic elastic medium is described by two independent elastic constants and supports compressional (P) and
shear (S) waves with spherical phase velocity surfaces (the surface formed by a wavefront around a source
point in the medium at a given point in time). In an anisotropic medium, the elastic waves cease to be
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purely compressional or shear waves [Aki and Richards, 1980; Babuska and Cara, 1991], but for weak aniso-
tropy (approximately to 10% [Park and Levin, 2016]), they can be described as a quasi-compressional (qP)
wave and a slow and a fast S wave with orthogonal polarizations. In an anisotropic medium with hexagonal
symmetry, also known as transverse isotropy, the elastic tensor has five independent elastic constants, and
the qP phase velocity surface has one unique symmetry axis with a circular cross section perpendicular to
it. For the orthorhombic case (nine independent elastic constants), the qP velocity surface is an ellipsoid with
three unique and orthogonal axes.

The symmetry decomposition method [Browaeys and Chevrot, 2004] involves projecting a vectorized version
of the full elastic tensor with 21 independent components, corresponding to the lowest-order (triclinic)
symmetry, onto orthogonal vectors corresponding to the different symmetry classes. This is done in order
from highest to lowest-order symmetry, removing the portion of the tensor that fits into each symmetry class.
Initially, the isotropic component is removed, followed sequentially by hexagonal, tetragonal, orthorhombic,
and monoclinic components. The remaining tensor after all symmetry components are removed is the
triclinic component. This method does not consider some possible symmetry classes, such as trigonal, so
the triclinic component could yet contain some symmetry, but while these components are present in
minerals, we do not expect aggregate rock tensors to contain significant proportions of other symmetry
classes. The extent to which the full tensor is represented by each symmetry class is quantified by the
norm of each symmetry component vector divided by the full tensor norm, i.e., the percentage of the full
tensor norm.

3.2. Magnitude of Anisotropy and Rock Types

The tensors in the compilation have a range of 1% to 22% anisotropy as measured by the percent of the
tensor norm that is not isotropic, with a median value of just over 5% (Figure 1b). A different measure of
anisotropy in standard use [Birch, 1960; Mainprice, 1990] is based solely on the difference between the
maximum and minimum velocity, e.g., for compressional velocity, AVp = (Vpmax � Vpmin)/Vpavg, where
Vpavg = 0.5 × (Vpmax + Vpmin). Tensor norm anisotropy and AVp of individual tensors in our compilation show
close agreement for most samples, with AVp slightly higher than tensor anisotropy by a factor of 1.18 in
median (Figure 1d).

3.3. Hexagonal Symmetry: Fast Versus Slow Axis, Off-Axis Behavior, and Ellipticity

Hexagonal symmetry, as the simplest anisotropic case, is a typical assumption made in seismological studies
of anisotropy. Common special cases are radial anisotropy (vertical symmetry axis), targeted in surface wave
studies using the Love-Rayleigh discrepancy [e.g., Shapiro et al., 2004; Moschetti et al., 2010; Xie et al., 2013],
and azimuthal anisotropy (horizontal symmetry axis), addressed in SKS splitting and Rayleigh wave
anisotropy studies.

Hexagonal anisotropy or transverse isotropy has been termed “melon-shaped anisotropy” in the fast-axis
case and “pumpkin-shaped anisotropy” in the slow-axis case [Levin and Park, 1998]. Mantle anisotropy is rea-
sonably well approximated by fast-axis hexagonal symmetry [Becker et al., 2006]. Crustal slow- or fast-axis ani-
sotropy inferred from receiver function azimuthal conversion amplitude variations is variously inverted for or
chosen via forward modeling [Frederiksen et al., 2003; Zandt et al., 2003; Sherrington et al., 2004; Audet, 2015;
Liu et al., 2015; Liu and Park, 2017] or assumed to be slow-axis hexagonal symmetry a priori [Weiss et al., 1999;
Vergne et al., 2003; Ozacar and Zandt, 2004, 2009; Porter et al., 2011; Olugboji and Park, 2016], especially when
mica is considered the dominant crystallographically aligned mineral [Shapiro et al., 2004]. Amphibole aniso-
tropy can produce fast-axis symmetry and is also invoked [Sun et al., 2012], and fast-axis symmetry in the crust
may be assumed in receiver function inversions [Bianchi et al., 2015]. Most receiver function studies that
target splitting of the Moho Ps converted phase [McNamara and Owens, 1993; Peng and Humphreys, 1997;
Nagaya et al., 2008; Nagaya et al., 2011; Liu and Niu, 2012; Sun et al., 2012; Shen et al., 2015; Sun et al., 2015;
Kong et al., 2016; Niu et al., 2016; Wang et al., 2016] solve for a fast horizontal axis orientation, as is standard
in shear wave splitting studies. Surface wave studies targeting crustal radial anisotropy (vertical symmetry
axis) find dominantly VSH> VSV [Moschetti et al., 2010; Xie et al., 2013] indicating slow-axis symmetry. Our crus-
tal compilation shows 77% slow-axis symmetry in the best fit hexagonal approximation and only 23% fast-
axis symmetry.
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Different notation conventions exist for the five independent elastic parameters in the hexagonal case (Love
coefficients [Love, 1944]; Backus coefficients [Backus, 1965; Crampin, 1977; Park, 1996]; and Thomsen coeffi-
cients [Thomsen, 1986]). We provide conversions between each set in Appendix A. Figure 2a shows composi-
tional trends and trends with strength of anisotropy of the two hexagonal symmetry groups. We display the
Backus coefficient b, representing azimuthal variation of hexagonal anisotropy, normalized by Backus coeffi-
cient a, representing average Vp [Backus, 1965], since this parameter indicates slow (b< 0) or fast (b> 0) axis
symmetry. All mica-rich samples fall in the slow-axis category, which also shows samples with stronger

Figure 2. (a) Scatterplot for all samples in the compilation showing percent tensor anisotropy as a function of Backus
coefficient b (corresponding to elliptical anisotropy, shown in percent) of the best fit hexagonal tensor, normalized by
Backus coefficient a (corresponding to average Vp). Color fill shows percentage of mica (same color scale for Figures 2a–2c,
shown on right). Negative values of normalized b correspond to slow-axis hexagonal symmetry, positive values to fast axis.
Vertical dashed line separates slow- and fast-axis domains. Diagonal dash-dotted lines show where total tensor anisotropy
has the same magnitude as the elliptical hexagonal anisotropy (b/a). (b) Same as Figure 2a, except with vertical axis
showing percent amphibole. (c) Backus parameter c, describing the deviation from elliptical anisotropy, as a function of
elliptical anisotropy. Parameter c = 0 for the elliptical case. Parameter c increases with increasing total anisotropy and
increasing elliptical anisotropy, b, particularly for slow-axis symmetry, mica-bearing samples. (d) Slice through Vp phase
velocity surfaces for all samples in the compilation. The symmetry axis is vertical, and the symmetry plane horizontal.
Velocities were scaled to a common minimum (min Vp) and maximum (max Vp) to emphasize the shape of the phase
velocity surface. Color shows deviation from the elliptical case.
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anisotropy, both by total anisotropy (vertical axis) and by azimuthal variation of the hexagonal approximation
(horizontal axis). The two measures of anisotropy scale similarly for most samples, with a few outliers. A scat-
terplot with amphibole content, azimuthal anisotropy b/a, and mica content (Figure 2b) shows that while
mica-rich samples always show slow-axis symmetry, amphibolites can fall into either the slow- or fast-axis
symmetry group. Ji et al. [2013, 2015] ascribed differences in amphibolite symmetry to deformation type.
Many of the publications our samples were compiled from do not provide sufficient fabric information to
investigate such relationships, and we encourage publication of J orM [Skemer et al., 2005] indices along with
the full elastic tensor.

A second assumption made in seismic studies invoking hexagonal symmetry, with less basis in observation
than the fast- versus slow-axis distinction, is one regarding off-symmetry axis velocity behavior. In the hexa-
gonal case, maximum and minimum velocities only describe the symmetry axis and the plane perpendicular
to it, and a unique definition of hexagonal symmetry requires a parameter that describes the phase velocity
behavior between the symmetry axis and symmetry plane. In the Backus representation (Appendix A), the
azimuthal velocity variation as a function of incidence angle θ relative to the symmetry axis is described by
cos(2θ) term with amplitude b and a cos (4θ) term with amplitude c. When c = 0, the phase velocity has an
ellipsoidal shape, with increasing c corresponding to increasing deviation from the elliptical anisotropy case.
Figure 2c shows c for all samples in the compilation. Deviation from ellipticity increases with increasing ellip-
tical anisotropy, b (which itself scales to total anisotropy, Figure 1a). To illustrate the effect of the 4θ term on
the phase velocity surface, we show the latter in Figure 2d. The effect of the off-axis velocity is more easily
described using a different parameter as follows.

Another commonly used representation of off-axis behavior is the shape factor η, defined as η = F/(A � 2 L)
[Anderson, 1961; Takeuchi and Saito, 1972] in terms of Love coefficients (Appendix A). The shape factor has no
straightforward physical meaning and can introduce unphysical effects when varied independently of
strength of anisotropy [Porter et al., 2011]. It is unknown what values of η are representative for crustal aniso-
tropy. Occasional references to a range of values for the shape factor of 0.4–0.9 are based on one ultrasound
study of five foliated samples [Godfrey et al., 2000].

Kawakatsu et al. [2015] and Kawakatsu [2016] introduced a different parameter they named ηκ, defined as
ηκ = (F + L)/[(A � L)1/2(C� L)1/2]. This new parameter has a straightforward geometrical interpretation in that
the velocity surface is ellipsoidal if ηκ = 1. We refer to this parameter as the ellipticity parameter. Kawakatsu
[2016, Figure 3 therein] shows how the phase velocity surface varies when the ellipticity parameter deviates
from 1; ηκ < 1 implies that the off-axis qP velocity surface is squashed inward from an elliptical shape (red
curves in Figure 2d), while ηκ > 1 implies that the off-axis qP velocity surface is inflated outward (toward
higher velocities) from an elliptical shape (blue curves in Figure 2d). In some cases, the minimum velocity
occurs at an oblique angle from the symmetry axis (Figure 2d; red curves in the slow-axis symmetry group).
The phase velocity changes in the opposite sense for shear waves [Kawakatsu et al., 2015]. In the absence of
information on appropriate values for η or ηκ for crustal anisotropy, an assumption made in many receiver
function anisotropy studies [Levin and Park, 1998; Levin et al., 2002a, 2002b; Ozacar and Zandt, 2004;
Sherrington et al., 2004; Levin et al., 2008; Ozacar and Zandt, 2009; Porter et al., 2011; Bianchi et al., 2015; Liu
et al., 2015; Licciardi and Agostinetti, 2016; Park and Levin, 2016] is that the off-axis velocities follow an elliptical
pattern, i.e., that ηκ = 1.

We calculate Kawakatsu [2016] ellipticity parameter ηκ using the best fit hexagonal tensor for all samples in
the compilation. The results (Figure 3a) show that anisotropy deviates systematically from the elliptical case
as a function of anisotropy, with a large majority of samples showing a decrease in ηκ with increasing aniso-
tropy (i.e., off-axis Vp is smaller than in the elliptical case). This trend is particularly pronounced for mica-rich
samples (red/purple points in Figure 3a). Amphibolites (green) follow a trend that has the same sense but is
less pronounced, while a few quartz-rich samples (blue) plot with positive ηκ indicating off-axis Vp larger than
expected in the elliptical case. We provide empirical scaling relationships for each trend in section 4.1. These
scaling relationships provide the crustal equivalent to scaling for the mantle as shown by Becker et al. [2006,
Figure 8].

The ellipticity parameter ηκ is not only useful because of its geometrical interpretation but also because it is
more stable than the shape factor η. Figures 3b and 3c show that the ellipticity parameter ηκ remains in a
stable and narrow range from slightly above 0.6 to less than 1.2 for all samples, while the shape factor η
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shows outliers for the same sample set. Apart from the outliers (Figure 3b; seen to be quartz-rich samples in
Figure 3a), shape factor and ellipticity parameter scale to each other and both decrease with increasing
anisotropy (Figure 3b). Some receiver function studies may use the hardwired shape factor value of
η = 1.03 from the original publication of Frederiksen and Bostock [2000], which was chosen for mantle
studies [Farra and Vinnik, 2000] and is not an appropriate choice for most crustal rocks.

3.4. Tensor Symmetry Groups

The tensors can be visualized by calculating velocities for every possible propagation direction using the
Christoffel equation and contouring them on a stereographic projection or stereonet plot. A few symmetry
groups become evident when the tensors are visualized rather than simply using the proportion of each sym-
metry component from the decomposition. Figure 4 shows stereonets of Vp for representative tensors from
seven symmetry groups and their low-anisotropy equivalents. First, the tensors can be grouped based on
whether their best fit hexagonal component tensor has a slow symmetry axis or a fast symmetry axis.
Within those groups, there are tensors that appear dominantly hexagonal, have a noticeable orthorhombic
component, or have lower order symmetry. The stereonets highlight the orthorhombic component even
when its contribution to the total tensor may not be very large compared to the hexagonal component.
This is particularly true for Vp, whereas the Vs symmetry tends to appear more complex because of the ten-
dency of the fast shear wave to switch polarization orientations in different propagation directions. For both
fast and slow-axis hexagonal symmetry groups, the tensors are nearly equally split between dominantly hex-
agonal and dominantly orthorhombic symmetry in Vp. The slow-axis group has more tensors in total and also
contains more tensors that are a combination of hexagonal and orthorhombic symmetry. There is a gradient

Figure 3. (a) Ellipticity parameter ηκ [Kawakatsu, 2016] as a function of strength of anisotropy. Each circle represents one
sample from the compilation, with color fill coded by mineral composition on the same ternary red-blue-green scale as in
Figure 5a; the minerals and their maxima are shown in the legend. Each color is scaled to the maximum percentage of the
corresponding mineral in the compilation. Dark samples are from some ultrasound studies with no modal compositions
reported. (b) Shape factor η for each sample as a function of ellipticity parameter ηκ, with color fill scaled by strength of
anisotropy. Arrow shows the hardwired value of η = 1.03 in the popular Raysum code [Frederiksen and Bostock, 2000], which
targeted mantle anisotropy. A common assumption, particularly in receiver function studies, is to set ηκ = 1 (elliptical case),
but most crustal samples deviate toward smaller values for the shape factor with increasing anisotropy. (c) Full view of
the same plot and same color scale that includes the three quartz-rich outliers in this plot with “inflated” off-axis Vp
(Figure 3a), with values for the shape factor near �4 and 120, respectively.
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between dominantly hexagonal and dominantly orthorhombic symmetry. There are also some tensors in
both the slow- and fast-axis groups that appear to have more low-order symmetry. The tensors with lower
magnitude of anisotropy fall into similar symmetry groups, but there are a few more low-anisotropy
tensors in the low-order symmetry group.

3.5. Anisotropic Symmetry Components as a Function of Rock Type

Grouping the tensors into symmetry groups reveals some recognizable trends in symmetry with respect to
rock type. The first obvious trend is that there are no schists in the fast-axis symmetry category. Schists are
defined by having a foliation fabric of visibly aligned micas and therefore must contain significant amounts
of mica. Micas are sheet silicate minerals with very high single-crystal anisotropy (>50% in Vp) and domi-
nantly hexagonal symmetry with a slow symmetry axis. It is thus not surprising that rocks identified as schists
will have slow-axis symmetry in their hexagonal component tensor. A trend in the fast-axis symmetry cate-
gory is that most of the rocks are amphibolites (27%), quartzofeldspathic gneisses (27%), or plutonic rocks
without gneissic layering (14%). All of the rocks in the fast-axis category are rich (~ > 45% by volume) in
one of three minerals: quartz, amphibole, or feldspar (plagioclase + K-feldspar). Five samples have >50%
quartz, seven have >50% amphibole (hornblende), and seven have >47% feldspar. None of the samples

Figure 4. Lower hemisphere Vp stereonets for representative tensors illustrating the tensor symmetry groups found in the compilation. Contours are 0.1 km/s. Color
scales vary for each tensor; we focus on symmetry appearance rather than absolute velocities in this figure. Sample numbers are shown above each stereonet,
tensor anisotropy in percent, and % AVp below. Matrix is arranged with slow-axis tensors on the left, fast on the right, with rows from top to bottom sorted by
dominant hexagonal symmetry, hexagonal with some orthorhombic symmetry, significant orthorhombic symmetry, lower order symmetries, and weak anisotropy.
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in the fast-axis category contain more than 10% mica. In general, fast-axis symmetry occurs only when a
single mineral, or a mineral group (i.e., feldspar), dominates the composition of the rock and when the
mica content is less than ~10%.

Most (77%) of the tensors in the compilation fall into the slow-axis symmetry category. This category
contains mostly quartzofeldspathic gneisses (40%), schists (20%), and plutonic rocks (16%), but all rock
types are found in the slow-axis symmetry category. The biggest difference between the fast- and slow-axis
symmetry categories are in the proportion of amphibolites and gneisses. There are proportionately more
amphibolites in the fast-axis category, with 27% compared to only 9% in the slow-axis category. Within
the slow-axis category, the dominantly hexagonal group contains only 1 amphibolite out of 14 tensors
and consists of 50% gneisses. The dominantly orthorhombic group contains 2 amphibolites out of 12
tensors but also contains 2 other amphibole-rich rocks. The largest group in the slow-axis symmetry cate-
gory is a combination of hexagonal and orthorhombic symmetry. This group contains 5 amphibolites out of
19 tensors.

Figure 5. (a) Ternary diagram showing the fraction of hexagonal to orthorhombic to lower symmetry components (axes) as
a function of composition (inset; continuous ternary red-blue-green color scheme separating mica, quartz + feldspar, and
amphibole) for all samples in the compilation with anisotropy of 5% or higher, and modal compositions of those minerals
totaling at least 80%. The positions of single-crystal hornblende (an amphibole), micas (muscovite and biotite), plagioclase
(a feldspar), and quartz are shown as diamonds for comparison. The samples with lower anisotropy show the same trends,
but we omit them tominimize crowding of the diagram. Single-crystal tensors are from Lakshtanov et al. [2007] for quartz at
20°C, Aleksandrov and Ryzhova [1961a, 1961b] for hornblende and biotite, Vaughan and Guggenheim [1986] for muscovite,
and Ryzhova [1964] for plagioclase (An24). (b) Scatterplot showing the orthorhombic component as portion of the total
anisotropy for all samples, displayed as a function of the strength of anisotropy of the sample. Color coding is the same as in
Figure 5a, except with colors scaled to the maximum modal occurrences of the respective minerals (shown in inset). Dark
samples are from some ultrasound studies with no modal compositions reported. (c) Isotropic, or average Vp, combined
with anisotropy can be used to distinguish samples that are rich in quartz-feldspar, mica, or amphibole. The color scheme is
the same as in Figure 5b, where red-green-blue values are assigned as red = mica, green = amphibole, and
blue = quartz + feldspar. Actual values are normalized by the maximum value for that mineral. Tensors for which modal
proportions for quartz, feldspar, mica, and amphibole were less than 80% total (N = 17) are not included here and would
include the calc-silicates and many of the ultrasonic studies.
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3.6. Strength of Orthorhombic and
Lower Symmetry Components and
Relationship to Composition

The significant symmetry components
in all of the tensors are isotropic, hexa-
gonal, orthorhombic, and triclinic.
Tetragonal components are much smal-
ler than 1% for all samples, andmonocli-
nic components are smaller than 1% for
all but three samples. If we only con-
sider the anisotropic components, we
have essentially a three-symmetry com-
ponent system that lends itself well to
visualization on a ternary diagram.
According to the three anisotropic sym-
metry components, hexagonal, orthor-
hombic, and remaining symmetry
(tetragonal + monoclinic + triclinic), we
notice that all of the samples plot
roughly on the hexagonal half of the
diagram (Figure 5a), suggesting that
hexagonal symmetry is indeed the most
dominant contribution to anisotropy.

However, when color coded according to mineralogy (red = mica, green = amphibole, blue = quartz +
feldspar), the symmetry contributions of particular minerals become apparent. For example, when minerals
such as quartz and feldspar are dominant in the sample (blue dots), the symmetry is dominated by the low-
order symmetry components. Likewise, when a rock contains large amounts of mica (red-purple dots), the
hexagonal symmetry component is dominant. For reference, the single-crystal symmetry components of a
few common minerals, quartz, feldspar, biotite, muscovite, hornblende, and olivine, are included on the tern-
ary diagram. The contribution of a particular mineral within a rock depends on its single-crystal symmetry and
its CPO. For example, hornblende does not have a particularly high component of orthorhombic symmetry in
its single-crystal elastic tensor, i.e., it is not located very near the orthorhombic corner of the ternary diagram,
but rocks with large amounts of hornblende tend to have higher orthorhombic symmetry components due to
the common hornblende CPO. This can be seen in Figure 5a by a general preference for the greener dots to be
closer to the orthorhombic corner of the ternary diagram than any of the other colored symbols.

A scatterplot of the contribution of the orthorhombic component to total anisotropy (Figure 5b) shows simi-
lar trends. This figure also shows trends with the total strength of anisotropy, where amphibolites (green)
have a noticeably stronger orthorhombic contribution than quartz- (blue) or mica-rich (red/purple) samples.
Only one sample each with significant quartz or mica show a large orthorhombic component. Samples rich in
mica (red/purple) show higher total anisotropy.

Finally, when average or isotropic Vp is plotted along with AVp (Figure 5c), there is quite good separation
between the amphibole-rich, quartz-feldspar-rich, and mica-rich samples. The mica-rich (pink-red) samples
are spread out toward lower Vp and higher anisotropy, while the quartz-feldspar-rich samples are concen-
trated at lower average Vp and anisotropy. Some of the more feldspar-rich samples have higher average
Vp and low anisotropy. The amphibole-rich samples have higher average Vp, and their higher anisotropy
separates them from the feldspar-rich samples.

4. Discussion
4.1. Simple Empirical Scaling Relationships for ηκ With Anisotropy

While seismic methods for determining elastic tensors from seismic data often assume elliptical hexagonal
symmetry (in the absence of information constraining off-axis velocities), results from the symmetry decom-
position of the elastic tensors in our compilation suggest that elastic tensors from crustal rocks are not

Figure 6. Three scaling relationships for ηκ as a function of AVp (fractional
rather than %). Line fits are shown with 90% confidence intervals. Red
samples are gneisses and schists with negative ηκ; green samples are
amphibolite population; and blue samples are all nonamphibolite
samples with ηκ > 1. The choice of these three populations was made to
best represent different trends with composition seen in Figure 3a.
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likely to be elliptical in their hexagonal symmetry component. The assumption of elliptical symmetry makes
the full unique elastic tensor a function of density, orientation of the symmetry axis (trend and plunge), and
four independent elastic parameters that can be expressed in terms of average Vp, average Vs, percent Vp
anisotropy, and percent Vs anisotropy. Nonelliptical symmetry requires an additional fifth elastic free para-
meter to describe velocities between the symmetry axis and symmetry plane. Our tensor compilation sug-
gests an approximately linear scaling between the ellipticity parameter ηκ and anisotropy. A simple scaling
relationship allows inclusion of nonelliptical behavior without increasing the free parameters in the inver-
sion, which means inversions will produce tensors that are more consistent with measured rock tensors.

Our tensor compilation provides three useful scaling relationships for ηκ as a function of AVp for a few differ-
ent groups (Figure 6). The scaling relationships were determined using a least squares linear fit to the data
with a fixed y intercept of 1, because ηκ is equal to 1 for isotropic tensors. The first scaling relationship is
for the 19 inflated hexagonal tensors, those with ηκ greater than 1. These are mostly fast-axis tensors, and
they show a positive scaling between ηκ and fractional AVp, with a slope of 0.7. The next is for the gneiss
and schist rock types, which include most of the compilation, 41 tensors. These show a negative scaling with
ηκ, with a slope of �1.1. Interestingly, the 21 amphibolite tensors show smaller deviations from the elliptical
case, with a slope of�0.3. These scaling relationships provide a simple alternative to the elliptical approxima-
tion, with the most commonly applicable case expected to be that for gneisses and schists, ηκ = 1–1.1 AVp
(where AVp is fractional AVp). We provide expressions for ηκ in terms of other sets of hexagonal coefficients
in Appendix A.

4.2. Effects on Seismic Signatures and Interpretation

We proceed to describe the seismic expression of the tensor characteristics in our compilation, in particular in
receiver functions. P receiver functions register anisotropy in two ways. The first is splitting of the P-to-S
converted phase [McNamara and Owens, 1993; Peng and Humphreys, 1997], which accumulates in anisotropic
layers above the converting contrast. Anisotropy of significant magnitude and thickness is required to accu-
mulate a measurable signal, and while the technique has experienced a recent resurgence in popularity for
estimating bulk crustal anisotropy from splitting of the Moho Ps phase [Nagaya et al., 2008, 2011; Liu and Niu,
2012; Sun et al., 2012; Ruempker et al., 2014; Shen et al., 2015; Sun et al., 2015; Kong et al., 2016; Niu et al., 2016;
Wang et al., 2016], it will not detect shear zones of a few kilometers thickness and a few percent contrast in
anisotropy, and splitting may be conflated with conversions from thinner anisotropic layers [Liu and Park,
2017]. A second receiver function method that is capable of resolving such structures robustly is based on
analyzing azimuthal variations in the amplitude and polarity of converted phases. These have significant
amplitude even for thin layers and anisotropy contrasts of a few to 10%, which we expect to be best repre-
sented by the anisotropy in our compilation. The conversions are mostly sensitive to Vp anisotropy [Levin and
Park, 1998; Park and Levin, 2016], which we focus on in this contribution.
4.2.1. Receiver Function Appearance for Different Symmetry Types
We first present synthetic waveforms for out-of-plane P-to-S converted phases for some of the example ten-
sors shown in Figure 4. We use the ray-based Raysum code [Frederiksen and Bostock, 2000] for the forward
modeling, with a modification where the entire elastic tensor is read in as input for an anisotropic layer, rather
than being constructed from isotropic velocities, percent Vp and Vs anisotropy, and hardwired shape factor
as in the original. The complete sample tensors are first rotated into their best fit hexagonal coordinate sys-
tems for consistency, since the tensors are reported in varying orientations in the original publications. Each
tensor is then inserted into a horizontal layer within the crust, surrounded by homogeneous isotropic crust
above and below, for calculation of the waveforms. The anisotropic layer thickness is set to 15 km, not
because we expect this thickness of coherent anisotropy in the crust to be realistic but to clearly separate
the topside and bottomside converted phases in the figures. The signals analyzed in the receiver function azi-
muthal conversion method are the conversions from the interface marking a contrast in anisotropy, so that
the layer thickness is required to be sufficient to separate the topside and bottomside conversions in time. In
reality, layers of ~2 km thickness may be resolved, depending on frequency content and Vp/Vs ratios within
the layer [Schulte-Pelkum and Mahan, 2014a, 2014b]. Thinner layers result in the same conversion amplitudes.
The only difference is the time separation between the topside and bottomside conversions.

Figure 7a shows radial component waveforms for sample 28 (Figure 4), a slow-axis dominantly hexagonal
tensor with 13% total tensor anisotropy and 14.5% AVp anisotropy. Here the tensor is oriented so that the
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axis of the best fit hexagonal symmetry is horizontal. The azimuthally averaged radial component arrival
amplitude is only a function of the contrast between the average velocity in the anisotropic layer and the
surrounding layers and is removed by subtracting the azimuthal stack trace R0 from the individual traces
for each back azimuth; note that this removes the direct P arrival at zero time entirely. The remaining
signal shown in Figure 7a is the out-of-plane signal on the radial component [Schulte-Pelkum and Mahan,
2014b]. The earlier arrival (~1.8 s delay time after direct P arrival) is the conversion from the top of the
anisotropic layer (delay time always scales with depth for receiver functions). It shows a four-lobed pattern
with back azimuth that is characteristic for azimuthal (i.e., horizontal symmetry axis) anisotropy. The later
arrival (~4.1 s) is the conversion from the bottom of the anisotropic layer. It has a polarity pattern opposite
that of the topside conversion. In addition, this arrival shows splitting accumulated by the converted shear
wave during propagation through the anisotropic layer. The observation target in our method is the
azimuthal amplitude variation of the conversions and not the splitting signal. Even for the synthetic cases
here with a large anisotropic layer thickness of 15 km with a relatively strong coherent anisotropy of 13%,
the splitting of the bottomside conversion is 0.5 s. In realistic cases with thinner layers of crustal anisotropy

Figure 7. (a) Synthetic radial component seismograms for model with 15 km thick anisotropic layer sandwiched from 15 to
30 km depth within isotropic crust. The anisotropic layer consists of sample 28, which has slow-axis best fit hexagonal
anisotropy with an orthorhombic component and 13% total tensor anisotropy. Incident slowness is set to 0.06 s/km. Traces
calculated for incidence from every 15° back azimuth, with subsequent azimuthal average trace (R0) subtracted from
each trace to isolate the out-of-plane signal that varies with back azimuth. Arrival at ~1.8 s is the P-to-S conversion from
the top of the anisotropic layer; arrival at ~4.1 s is from the bottom of the anisotropic layer. The latter shows a slight split of
the converted shear wave accumulated during travel through the anisotropic layer. Note the four-lobed (degree-2, A2)
pattern. (b) Same as Figure 7a but transverse component, with a shift in back azimuth (i.e., along y axis) of 45° to show the
match to the out-of-plane radial component in Figure 7a. (c) Out-of-plane signal in radial component as in Figure 7a, but
here for the same tensor with a 35° symmetry axis plunge from horizontal (i.e., 55° dipping foliation plane). (d) As in
Figure 7b but also for plunging axis tensor. Note the two-lobed (degree-1, A1) pattern in Figures 7c and 7d, as well as
larger conversion amplitudes for the same tensor compared to the horizontal axis case in Figures 7a and 7b (the same
amplitude scaling is used in all panels). (e–h) As in Figures 7a–7d but for a fast-axis symmetry tensor (sample 13, see
Figure 4) with 8% tensor anisotropy.
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(e.g., shear zones), the splitting will be significantly less, and observational evidence places most around a
maximum of ~0.3 s, although crustal splitting values up to ~1 s have been proposed for the thick crust of
Tibet [Sun et al., 2015; Niu et al., 2016].

Transverse component receiver functions in general only show arrivals in cases with dipping interfaces or
contrasts in anisotropy. Figure 7b shows transverse component waveforms for the same model and same
tensor as in Figure 7a, also for horizontal symmetry axis orientation. The traces were shifted by 45° in back
azimuth to emphasize the similarity of the polarity and amplitude pattern to that of the out-of-plane signal
on the radial component [Schulte-Pelkum and Mahan, 2014b]. The azimuth-shifted transverse and the
average-corrected radial components are nearly identical. At amplitudes of ~0.1 H/Z, the arrivals roughly
are about a third of a standard Moho arrival amplitude and should be visible at quiet stations in real data.

When inserting the same tensor after rotating it to generate a symmetry axis that is tilted within the horizon-
tal anisotropic layer, out-of-plane conversion amplitudes are significantly larger (Figure 7c), an observation
made previously both via forward modeling [Levin and Park, 1998; Schulte-Pelkum and Mahan, 2014b] and
theory [Park and Levin, 2016]. The out-of-plane signal amplitude on both the radial (Figure 7c) and transverse
(Figure 7d) components is now comparable to that of a strong radial component Moho signal in standard
receiver function analysis. The dominant azimuthal harmonic is now a two-lobed or degree-1 pattern, termed
A1 here, and the transverse component was shifted in back azimuth by 90° (Figure 7d) to show the corre-
spondence in the polarity pattern.

Figures 7e–7h show similar synthetic waveforms for a tensor with fast-axis symmetry, rather than slow axis as
in the previous figure. The tensor anisotropy strength is 8% (9% AVp), and the dominant symmetries are
hexagonal with a significant orthorhombic component (Figure 4). The horizontal axis orientation results in
arrivals with purely A2 (degree-2, four-lobed) azimuthal periodicity (Figures 7e and 7f), while the plunging
axis case shows a mix of A1 and A2 components (Figures 7g and 7h), unlike the previous tensor (Figures 7c
and 7d). The polarities of the arrivals are also reversed compared to the slow-axis case, as expected.

Themaximum amplitudes of the topside conversion over all incidence back azimuths are displayed as a func-
tion of symmetry axis plunge for seven example tensors in Figure 8, with the calculations performed with the
same code. The amplitude is the highest over all back azimuths on the transverse component. Also shown are
the A1 and A2 amplitudes of the harmonic azimuthal decomposition [Schulte-Pelkum and Mahan, 2014b] and
the degree to which the first two azimuthal harmonics reproduce themaximum observed out-of-plane arrival
amplitude. Figure 8b shows results for sample 28 also used in Figures 7a–7d, and Figure 8e is the same tensor
as for Figures 7e–7h. Figure 8 shows representative calculations for fast- and slow-axis hexagonal (Figures 8a
and 8d), orthorhombic (Figures 8b, 8c, and 8e), and low-order symmetry (Figures 8g and 8h) cases. In most
cases, the first two azimuthal harmonics reproduce the total signal amplitude very closely; slight exceptions
are seen for one fast-axis hexagonal case (Figure 8d) and a low-order case (Figure 8h), with another low-order
symmetry sample showing larger deviations (Figure 8g). All higher-order symmetry cases show dominant A2
periodicity in conversions for the horizontal symmetry axis/azimuthal anisotropy case (plunge = 0°) as well as
dominant A1 periodicity for the plunging axis case, with minimal amplitudes for the case where the best fit
symmetry axis is vertical (plunge = 90°). Figures 8f and 8i show the breakdown of the compilation in terms of
symmetry classes and strength of anisotropy. Slow-axis best fit hexagonal symmetry dominates, and a significant
number of samples show a noticeable orthorhombic influence in the stereoplots (Figures 8f and 4). However,
the azimuthal amplitude behavior is similar between dominant hexagonal tensors and those with a signifi-
cant orthorhombic component (Figures 8a–8e). The ratios of the number of samples with stronger (>5%)
and weaker (<5%) anisotropy are comparable between the fast and slow best fit symmetry cases (Figure 8i).
4.2.2. Effect of Off-Axis Symmetry (Deviation From Ellipticity) on Receiver Functions
We determined in section 3.5 that the elliptical assumption for the best fit hexagonal tensor component does
not hold for our tensor compilation and that the deviation from ellipticity scales with the strength of aniso-
tropy. We investigate the effect of this behavior on observed receiver function conversions in this section.
Studies that model or invert receiver function conversion amplitudes to determine strength of anisotropy
commonly assume elliptical anisotropy [Levin and Park, 1998; Levin et al., 2002a, 2002b; Ozacar and Zandt,
2004; Sherrington et al., 2004; Levin et al., 2008; Ozacar and Zandt, 2009; Porter et al., 2011; Bianchi et al.,
2015; Liu et al., 2015; Park and Levin, 2016; Licciardi and Agostinetti, 2016], and we are interested to what
extent the latter assumption will bias the inferred strength of anisotropy.
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Figure 9 shows the maximum observed out-of-plane receiver function amplitude (Tmax) for each sample in
the compilation. As in Figure 8, we use the maximum amplitude over all back azimuths calculated for the top-
side conversion on the transverse component, and we again use a representative incident slowness of 0.06 s/
km. The maximum amplitude is calculated for each sample for three orientations of the tensor: one for a best
fit hexagonal symmetry axis plunge of 0° (closest to azimuthal anisotropy; red symbols in Figure 9); one for
90° plunge (closest to radial anisotropy; green symbols in Figure 9); and one for a plunge of 35° (symmetry
plane dip of 55°, blue symbols in Figure 9), the plunge angle that maximizes the median maximum out-
of-plane conversion amplitude over all samples for the assumed slowness.

The maximum amplitudes are shown twice, once as a function of tensor anisotropy and once as a function of
AVp. They follow similar approximately linear trends, although scatter is reduced in the display using tensor
anisotropy. As in Figure 8, conversions are largest for the plunging axis case, intermediate for the horizontal
axis case, and small for the vertical axis case. Some outliers to this trend represent tensors with particularly
low-order symmetry.

Figure 8. (a) Receiver function amplitudes (black dash-dotted, maximum transverse component Tmax; red solid, degree-1 azimuthal harmonic fit amplitude A1; blue
dashed, degree-2 azimuthal harmonic fit amplitude A2; pink dotted, reproduction of Tmax by A1 and A2 combined, including azimuthal phase relationship; see
Figure 8h for the legend). Amplitudes are shown as functions of best fit hexagonal symmetry axis plunge in degrees from horizontal (0 = azimuthal anisotropy
approximation with horizontal symmetry axis, 90 = radial anisotropy approximation with vertical symmetry axis), for example, sample tensors shown in Figure 4. An
intermediate ray parameter of 0.06 s/km is used for calculating all synthetic receiver functions. Sample 39 (sample number shown on top) is an example for a tensor
well approximated by slow-axis hexagonal symmetry (Figure 4; all tensors used for this figure are displayed in Figure 4). Total tensor anisotropy shown as inset
(18%). (b) Same as Figure 8a but for a slow-axis orthorhombic sample. (c) Same as Figure 8a but for a sample showing a mix of hexagonal and some orthorhombic
symmetry. (d) Same as Figure 8a but fast-axis hexagonal symmetry. (e) Same as Figure 8a but fast-axis orthorhombic symmetry. (f) Pie chart of symmetry types
found in compilation (hexagonal with total tensor anisotropy >5%, hexagonal with weak orthorhombic component and total tensor anisotropy >5%, strong
orthorhombic component and total tensor anisotropy >5%, low-order symmetry, and any symmetry with total tensor anisotropy <5%). (g) Same as Figure 8a but
dominant low-order symmetry with nominal slow hexagonal axis. (h) Same as Figure 8g but nominal fast hexagonal axis. (i) Pie chart of slow- (73 samples) and
fast-axis (22 samples) best fit hexagonal symmetry in the compilation, each broken down into weak (<5%) and strong (>5%) total tensor anisotropy groups.
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4.2.3. Quantitative Effect of Nonellipticity on Interpretation of Receiver Function Anisotropy
We proceed to estimate the bias introduced by the elliptical assumption by constructing synthetic hexagonal
tensors that are either elliptical or follow our empirical scaling relationships for deviation from ellipticity from
section 4.1 and predicting out-of-plane conversion amplitudes. Figure 10a shows predicted transverse com-
ponent amplitudes (maximum over all back azimuths) for the three scaling relationships from section 4.1 and
the elliptical case as a function of anisotropy strength, again using an incident ray parameter of 0.06 s/km,
which is average for teleseismic P receiver functions. The amplitudes are nearly linear with strength of aniso-
tropy (linear fits are shown). Figure 10b shows the amount by which the strength of anisotropy will be over-
estimated or underestimated by assuming ellipticity based on the linear trends in Figure 10a, shown as a
function of input true AVp. As an example, if receiver function waveforms from an area with gneisses or
schists with 10% true velocity anisotropy (AVp) were to be inverted assuming elliptical anisotropy, the
observed anisotropy would be overestimated by an additional 4% for a total of 14% apparent elliptical ani-
sotropy; for 15% true anisotropy, the apparent anisotropy would be 15% + 6% = 21% using the elliptical
assumption. The bias is minimal for amphibolites (e.g., anisotropy will be overestimated by 1% for 10% true
AVp). The bias is slightly larger in the opposite sense for the sample group with off-axis velocities exceeding
ellipticity (e.g., close to 2% underestimate at 10% AVp). The bias is largest for the most common rock type in
the compilation, gneisses and schists, where anisotropy would be overestimated by 40% of true anisotropy.
The fit of the maximum amplitude as a function of AVp for gneisses and schists is overlaid on the observed
maximum amplitudes for the tensor compilation in Figure 9 and provides a reasonable upper limit. The use of
the elliptical approximation may explain some high values for crustal anisotropy resulting from receiver func-
tion inversions. For example, Porter et al. [2011] analyzed 38 stations for lower crustal anisotropy in Southern
California, where there is presumed to be schist in the lower crust, using the elliptical assumption. They found
the maximum anisotropy allowed by their inversion (20%) at 7 of the stations, with 29 stations having aniso-
tropy of 10% or greater and 16 stations at 15% or greater. These values are high compared to the values in our

Figure 9. (a) Out-of-plane receiver function conversion H/Z amplitude (maximum amplitude over all back azimuths;
abbreviated Tmax) for all sample tensors reoriented into best fit hexagonal systems; blue circles for 35° plunging
symmetry axis (yielding maximum median amplitude for the chosen ray parameter of 0.06 s/km), red diamonds for 0°
plunge (closest to azimuthal anisotropy orientation), and green squares for 90° plunge (closest to radial isotropy
orientation), shown as a function of tensor norm anisotropy. (b) Same as in Figure 9a but shown as a function of AVp;
note slightly larger scatter but similar linear trend. Dotted line in both panels is slope fit from synthetically constructed
purely hexagonal symmetry tensors with gneiss/schist empirical ellipticity (red line in Figure 10a).
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compilation for schists (including Southern California schists) and would be lower using our nonelliptical
scaling relationship.
4.2.4. Qualitative Effect of Off-Axis Scaling on Interpretation of Surface Wave Anisotropy
Surface wave results are most commonly inverted in terms of either radial anisotropy based on the Love-
Rayleigh discrepancy [e.g., Shapiro et al., 2004; Moschetti et al., 2010; Xie et al., 2013] or azimuthal anisotropy
based on azimuthal variations of Rayleigh wave phase velocity [e.g., Lin and Ritzwoller, 2011] and H/V ratios
[Tanimoto and Rivera, 2008; Lin and Schmandt, 2014]. Conceptually, there is no reason that the two types
of anisotropy should exist independently or that anisotropy should be restricted to nonplunging axes, and
Xie et al. [2015] extended the standard surface wave treatment to allow plunging hexagonal symmetry axes.
They found that their inversion allowed two classes of solutions with equal fit to the data, one for elliptical
hexagonal anisotropy and the other for nonelliptical anisotropy. Our compilation suggests that the latter is
the more appropriate solution. Our observed values for the deviation from ellipticity match those in the
nonelliptical solution set in Xie et al. [2015].
4.2.5. Accuracy of Hexagonal Symmetry Assumption in Receiver Function Analysis
In this section, we test how well the seismic signatures of complete elastic tensors in the compilation are
represented by their hexagonal approximation. A long-standing question is whether orthorhombic symme-
try (or lower symmetry components) cause bias when making the simplifying assumption of hexagonal ani-
sotropy in seismic studies. We conduct tests with synthetic receiver function conversion amplitudes, again
focusing on Vp anisotropy effects [Park and Levin, 2016].

Figures 11a–11f show transverse component synthetic waveforms for the same model as in Figures 7a–7d.
The tensor used is that for sample 28, a slow-axis case with an orthorhombic component (Figure 4).

Figure 10. (a) Maximum synthetic out-of-plane receiver function amplitude calculated for synthetic hexagonal tensors
constructed using ellipticity values predicted by the three empirical relationships in Figure 6, with linear line fits.
Receiver function slowness of 0.06 s/km and slow hexagonal symmetry axis with plunge of 35° are used. Black circles and
line show elliptical case for comparison. (b) Overestimation (positive on vertical axis) and underestimation (negative on
vertical axis) of amount of anisotropy given an observed out-of-plane receiver function amplitude for different rock groups
as a function of true anisotropy if elliptical anisotropy is assumed, using linear fits from Figure 10a. For instance, for gneisses
and schists having ηκ < 1 with 10% true AVp, inverting receiver functions assuming elliptical symmetry would result in
overestimating total AVp as 14% (an additional 4% over the 10% actual value), 15% would appear as 15% + 6% = 21%, and
20% would be overestimated as 28%. Inferred anisotropy will be 40% larger than actual anisotropy when assuming ellip-
ticity for gneisses and schists.
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Figure 11. (top row) Synthetic transverse component waveforms for a model containing sample tensor 28 (slow axis
hexagonal with orthorhombic pattern) sandwiched in a horizontal layer from 15 to 30 km depth in isotropic crust.
Amplitude scale is the same in all panels in this figure. (a) “Whole tensor” uses the complete tensor with horizontal
symmetry axis (plunge 0°); (b) “ort + hex” uses an approximate tensor represented by the hexagonal and orthorhombic
components, omitting lower order components from the tensor decomposition, in the same horizontal symmetry axis
orientation; (c) “hex.” uses only the hexagonal component, also in horizontal symmetry axis orientation; (d) “whole, pl.” is for
the complete tensor with 35° symmetry axis plunge; (e) “orth + hex, pl” is for the hexagonal + orthorhombic approximation
with plunging symmetry axis; (f) “hex. pl.” for the hexagonal approximation with plunge. (g–l) As in Figures 11a–11f but
for sample 13, a fast-axis hexagonal tensor with orthorhombic pattern. (m–r) As in Figures 11a–11f and Figures 11g–11l but
for sample 57, a low-order symmetry tensor.
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Synthetic waveforms are calculated as above, with slowness 0.06 s/km. We show waveforms calculated
using the whole rock tensor, only the hexagonal component of the tensor, and the hexagonal + orthor-
hombic components, for the horizontal symmetry axis and plunging symmetry axis cases. The hexago-
nal and hexagonal + orthorhombic cases are a very close approximation of the waveforms calculated
for the whole tensor, with no noticeable difference between the hexagonal versus hexagonal + orthor-
hombic cases and only very subtle differences from those to the whole tensor case. The same holds for
another sample (sample13; Figure 4) that has fast-axis symmetry with an orthorhombic pattern
(Figures 11g–11l). Similar observations hold for most tensors in our compilation. Only in the case of a
strongly low-order symmetry tensor (sample 57; Figure 4) are the waveforms for the whole tensor
significantly different from those calculated using the hexagonal or orthorhombic approximation
(Figures 11m–11r). We conclude that the hexagonal approximation is close to accurate for receiver func-
tions in most cases and that it may be difficult to separate orthorhombic from hexagonal symmetry
using receiver function conversions.
4.2.6. Additional Factors Not Addressed by Our Compilation
A perennial question in studies of seismic anisotropy that attempt to relate seismic observations to rock
fabric is that of scaling from microstructure to seismic wavelengths. In this study, we extrapolated from
the microstructural (in the case of EBSD-, XTG-, and universal stage texture-derived tensors) or hand
sample scale (in the case of ultrasound-derived tensors) to the seismic scale. In addition, all tensors from
EBSD, XTG, and universal stage were calculated without taking the geometrical arrangement of the
mineral modes into account; in reality, arrangement of the oriented grains in space within a sample
may change its bulk elastic tensor [Vel et al., 2016]. Both questions may now be addressed by a treatment
of the arrangement of the grains in a microstructural scale [Naus-Thijssen et al., 2011b, 2011a; Vel et al.,
2016] or spatial variations such as folding of layers with different compositions on the meter scale,
100 m scale, or kilometer scale [e.g., Okaya et al., 2010]. However, our compilation provides a foundation
on the microstructural and hand sample scale that future efforts for including geometrical effects can
build upon.

This contribution does not discuss shear wave behavior, and the compiled samples do not exhaust the
published literature, although we estimate that we have collected the majority of currently available
published and possible author-contributed full elasticity tensors. Shear wave behavior and publication of
the entire compilation will be the subject of a future publication.

5. Conclusions

We present an initial compilation of elastic tensors published for crustal rocks representing anisotropy
below crack closure depth. Such data are necessary to provide ground truth for seismic observational
and modeling studies, and we strongly encourage authors of future publications to include the com-
plete elastic tensors (only 5 out of 12 studies used in the current compilation included the full elastic
tensors). We observe that most samples are well approximated by hexagonal symmetry, that slow-axis
hexagonal symmetry is more common in crustal samples, and that mica-rich rocks show slow rather
than fast-axis symmetry, while amphibolites can fall in either category. Contrary to a popular assump-
tion, samples deviate from elliptical hexagonal anisotropy with increasing strength of anisotropy, and
we provide empirical scaling relationships to quantify this behavior, as well as estimates for the error
incurred by assuming elliptical anisotropy. The elliptical assumption results in overestimation of aniso-
tropy for common lower crustal rock types. Receiver function studies focused on crustal anisotropy
should recognize the potential bias introduced by the elliptical assumption and consider introducing a
scaling relationship into their inversions. We model the expression of the seismic anisotropy resulting
from the full tensors in receiver function conversions, including conversion amplitudes and azimuthal
harmonics. As for previously modeled purely hexagonal tensors, the full rock-based tensors show that
horizontal symmetry axis orientations have dominantly degree-2 azimuthal receiver function amplitude
behavior and plunging axis orientations have dominant degree-1. The scaling relationships derived from
this compilation provide a stepping stone toward improving seismic inversions for crustal anisotropy. As
the tensor compilation grows, more trends may be observed, and scaling relationships will be
updated accordingly.
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Appendix A: Ellipticity Parameter in Terms of Different Sets of Parameters for
Hexagonal Symmetry Used in Seismic Studies

We presented empirical scaling relationships between deviation from ellipticity (Kawakatsu’s ellipticity para-
meter ηκ) and strength of anisotropy in section 4.1, where ηκ was defined in terms of the Love coefficients.
Here we provide expressions for ηκ in terms of two other commonly used sets of hexagonal elastic para-
meters (Backus and Thomsen parameters).

Backus parameters [Backus, 1965] are defined as follows:

ρVp
2 ¼ aþ b cos 2θ þ c cos 4θ

ρVs
2 ¼ d þ e cos 2θ

where ρ is density; θ is the angle between the propagation direction and symmetry axis; and a is related to
average Vp, b to azimuthal Vp anisotropy, c to ellipticity (c = 0 elliptical), d to average Vs, and e to azimuthal
Vs anisotropy. The ellipticity parameter ηκ in terms of Backus parameters is

ηκ ¼ a�3c�d�effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbþc�d�e

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�bþc�d�e

p .

Thomsen parameters [Helbig and Thomsen, 2005; Thomsen, 1986] are popular in surface wave studies [e.g.,
Becker et al., 2006; Xie et al., 2015]. They are defined in terms of Love coefficients as follows:

VP0 ¼
ffiffi
C
ρ

q
(P velocity along symmetry axis)

VS0 ¼
ffiffi
L
ρ

q
(S velocity along symmetry axis)

ε ¼ A�C
2C (P anisotropy parameter)

γ ¼ N�L
2L (S anisotropy parameter)

δ ¼ Fþ2L�C
C (off-axis parameter; elliptical anisotropy if δ = ε)

where ρ is density. The expression for δ is simplified to omit quadratic terms [Helbig and Thomsen, 2005]. The
ellipticity parameter in terms of Thomsen parameters has the form

ηκ ¼
1� VS0

2=VP0
2 þ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� VS0
2=VP0

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� VS0
2=VP0

2 þ 2ε
p :

The parameter η used in Raysum can be calculated from a combination of Love parameters and ηκ using the
following:

η ¼ ηκ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Lð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C � Lð Þp
A� 2L

where in terms of Raysum inputs ρ, Vp, Vs, AVp, and AVs,

A ¼ ρ� Vp� Vp� AVp=100ð Þ2

C ¼ ρ� Vpþ Vp� AVp=100ð Þ2

L ¼ ρ� Vsþ Vs� AVs=100ð Þ2
and AVp and AVs are negative for slow-axis symmetry.

In addition, we provide conversions between Love and Backus parameters below for completeness and
because some published expression have typographical errors.

Love parameters in terms of Backus parameters are as follows (in Sherrington et al. [2004], equation (A11) for N
has a typographical error):

A ¼ a� bþ c

C ¼ aþ bþ c

F ¼ a� 3c � 2 d þ eð Þ
L ¼ d þ e

N ¼ d � e
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Backus parameters in terms of Love parameters are as follows (in Soukup et al. [2013], Table VI has a typogra-
phical error for b):

a ¼ 3 Aþ Cð Þ þ 2 F þ 2Lð Þ
8

b ¼ C � A
2

c ¼ Aþ C � 2 F þ 2Lð Þ
8

d ¼ Lþ N
2

e ¼ L� N
2
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